If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-14t-1.8=0
a = 4.9; b = -14; c = -1.8;
Δ = b2-4ac
Δ = -142-4·4.9·(-1.8)
Δ = 231.28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-\sqrt{231.28}}{2*4.9}=\frac{14-\sqrt{231.28}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+\sqrt{231.28}}{2*4.9}=\frac{14+\sqrt{231.28}}{9.8} $
| -2x-2(x+2)=8(x+4) | | 5x+11=46 | | {5x+11=46}5x+11=46 | | 2x+8x-7=33 | | -336=-6(1+8m)+6 | | 1=0.1x+-0.7x+-5 | | -8(-5+2k)-5(4k-8)=8k-4k | | 0=2a+7a | | 3k+3=k+3 | | -3a-5(3a+3)=-3(a-3)-3a | | 0.02x+0.25=-0.03x-0.5 | | 7x+1+5x+3=12x+4 | | X=10-2/3x | | 11/x=41 | | 3(4x-28)=24 | | 3(6v-8)-8(-7+2v)=6v+4v | | -21=5611x | | 3x+14=7x-35 | | -2(7v-3)=104 | | x/3–9=12 | | 10-3x=5x+17 | | (3x+20)=0 | | -216=4(7v+2) | | 175=7(4p+1) | | 2x-5=2x-39 | | 3(3u+-6)=18 | | 4(t − 3) = 2t + 74(t − 3) = 2t + 7 | | -240=-6+6(1+8n) | | 39=2.4x | | 4(t − 3) = 2t + 7 | | 23x6=(.)+3x6 | | 9k/9=45 |